汉明码(Hamming Code)原理及实现

分类: 365视频游戏世界 时间: 2025-07-31 13:35:18 作者: admin 阅读: 2386 点赞: 526
汉明码(Hamming Code)原理及实现

汉明码实现原理

汉明码(Hamming Code)是广泛用于内存和磁盘纠错的编码。汉明码不仅可以用来检测转移数据时发生的错误,还可以用来修正错误。(要注意的是,汉明码只能发现和修正一位错误,对于两位或者两位以上的错误无法正确和发现)。

汉明码的实现原则是在原来的数据的插入k位数据作为校验位,把原来的N为数据变为m(m = n +k)位编码。其中编码时要满足以下原则:

2^k - 1 >= m 其中(m = n + k)

这就是Hamming不等式,汉明码规定,我们所得到的m位编码的2^k ( k>=0 && 2^k < m)位上插入特殊的校验码,其余位把源码按顺序放置。

汉明码的编码规则如下:

在新的编码的2^(k - 1)( k >= 0)位上填入0(即校验位)

把新的编码的其余位把源码按原顺序填入

校验位的编码方式为:第k位校验码从则从新的编码的第2^(k - 1)位开始,每计算2^(k - 1)位的异或,跳2^(k - 1)位,再计算下一组2^(k - 1)位的异或,填入2^(k - 1)位,比如:第1位校验码位于新的编码的第1位(2 ^(1-1) == 1)(汉明码从1位开始),计算1,3,5,7,9,11,13,15,...位的异或,填入新的编码的第1位。第2位校验码位于新的编码的第2位(2 ^(2-1) == 2),计算2,3,6,7,10,11,14,15,...位的异或,填入新的编码的第2位。第3位校验码位于新的编码的第4位(2 ^(3-1) == 4),计算4,5,6,7,12,13,14,15,20,21,22,23,...位的异或,填入新的编码的第4位。第4位校验码位于新的编码的第8位(2 ^(4-1) == 8),计算8-15,24-31,40-47,...位的异或,填入新的编码的第8位。第5位校验码位于新的编码的第16位(2 ^(5-1) == 16),计算16-31,48-63,80-95,...位的异或,填入新的编码的第16位。

汉明码编码实例

以10101编码为例,创建一个汉明码编码的空间,并且把源码填入编码的对应位中中,_ _ 1 _ 0 10 _ 1,并留出校验码位(校验位先设为0)。(因为2^4 - 1>= 5+4 && 2^3 - 1 < 5+ 3所以需要4位校验码)

计算校验码的第1位(1,3,5,7,9进行异或): 结果为0,所以汉明码第2^0位为0,结果为0 _ 1 _ 0 10 _ 1

计算校验码的第2位(2,3,6,7进行异或): 结果为0,所以汉明码第2^1位为0,结果为001 _ 0 10 _ 1

计算校验码的第3位(4,5,6,7进行异或): 结果为1,所以汉明码第2^2位为0,结果为0011 0 10 _ 1

计算校验码的第4位(8, 9进行异或): 结果为0,所以汉明码第2^3位为1,结果为0011 0101 1

所以最终编码为001101011.

汉明码校验错误实例

我们以上面的编码为例,假设我们现在收到的编码为001101001,我们可以发现汉明码的第8位与原来的汉明码001101011不同,那我们怎么找出这个第8位的错误编码呢?

算法很简单,我们只要在算汉明码校验位的算法的上再算一遍,就得到了汉明码的校验方法,比如计算001101001对应的2^k位。

1,3,5,7,9进行异或,得到0

2,3,6,7进行异或,得到0

4,5,6,7进行异或,得到0

8,9进行异或,得到1

我们把上述结果反着排列,得到1000,即十进制的8,根据汉明码的校验规则,编码出错的地方即在第8位,我们把第8位的0换成1,即可得原来的编码001101011。

上述的例子是出现在2^k的校验位上的,如果出现在非2^k位上,得到的结果也是一样的,比如:

假设收到的编码为001100011,即第6位出了错误,我们根据规则

1,3,5,7,9进行异或,得到0

2,3,6,7进行异或,得到1

4,5,6,7进行异或,得到1

8,9进行异或,得到0

我们把上述结果反着排列,得到0110,即十进制的6,根据汉明码的校验规则,编码出错的地方即在第6位,我们把第6位的0换成1,即可得原来的编码001101011。

汉明码的编码和校验的C++实现

通过原理,我们可以很简单地实现汉明码的编码和校验代码

编码:

auto cal(size_t sz)->decltype(auto)

{

decltype(sz) k = 0;

decltype(sz) cur = 1;

while (cur - 1 < sz + k )

{

cur <<= 1;

k++;

}

return k;

}

bool encode(const string &s, string &d)

{

d.clear();

auto k = cal(s.size());

d.resize(s.size() + k);

for (decltype(d.size()) i = 0, j = 0, p = 0; i!= d.size();i++)

{

if ((i + 1) == pow(2,p) && p < k)

{

d[i] = '0';

p++;

}

else if (s[j] == '0' || s[j] == '1')

d[i] = s[j++];

else

return false;

}

for (auto i = 0; i != k;i++)

{

int count = 0 ,index = 1 << i;

for (auto j = index - 1; j < d.size() ;j += index)

for (auto k = 0; k!= index && j < d.size(); k++, j++)

count ^= d[j] - '0';

d[index - 1] = '0' + count;

}

return true;

}

解码与校验:

auto antiCal(size_t sz)->decltype(auto)

{

decltype(sz) k = 0;

decltype(sz) cur = 1;

while (cur < sz)

{

cur <<= 1;

k++;

}

return k;

}

auto decode(string &s, string &d)->decltype(auto)

{

s.clear();

auto k = antiCal(d.size());

s.resize(d.size() - k);

decltype(d.size()) sum = 0;

for (decltype(k) p = 0;p != k;p++)

{

int pAnti = 0;

decltype(k) index = 1 << p;

for (decltype(d.size()) i = index - 1;i < d.size(); i+=index)

{

for (auto j = 0; j < index && i < d.size(); i++, j++)

pAnti ^= d[i] - '0';

}

sum += pAnti << p;

}

if (sum != 0)

d[sum - 1] = (1- (int)(d[sum - 1] - '0')) + '0';

for (decltype(d.size()) i = 0, p = 0,j = 0; i != d.size(); i++)

{

if ((i + 1) == (1 << p) && p < k)

p++;

else

s[j++] = d[i];

}

return sum;

}

测试样例:

int main()

{

string source, dest;

while (cin >> source)

{

if (encode(source,dest))

{

cout << "Source: " <

cout << "Dest: " << dest << endl;

}

size_t index;

cout << "----input error index : ";

cin >> index;

auto k = dest.size();

if (index != 0 && index <= dest.size())

dest[index - 1] = (1 - (int)(dest[index - 1] - '0')) + '0';

cout << "Code " << dest <

auto ret = decode(source,dest);

if (ret == 0)

{

cout << "Source: " <

cout << "Dest: " <

}

else

{

cout << "Error index "<< ret << endl;

cout << "Corret source: " <

cout << "Corret dest: " <

}

cout << endl;

}

return 0;

}

10101

Source: 10101

Dest: 001101011

----input error index : 8

Code 001101001

Error index 8

Corret source: 10101

Corret dest: 001101011

1001010101010101010111111001101

Source: 1001010101010101010111111001101

Dest: 1111001101010100101010101111110101101

----input error index : 20

Code 1111001101010100101110101111110101101

Error index 20

Corret source: 1001010101010101010111111001101

Corret dest: 1111001101010100101010101111110101101

1

Source: 1

Dest: 111

----input error index : 0

Code 111

Source: 1

Dest: 111

参考资料:Calculating the Hamming Code

相关推荐

新冰箱静置6小时够吗?买新冰箱回家多久可以通电?
日博365官网网址

新冰箱静置6小时够吗?买新冰箱回家多久可以通电?

📅 07-29 👁️ 2663
建设银行怎么存定期每月 怎么设置自动存款
365bet新地址

建设银行怎么存定期每月 怎么设置自动存款

📅 06-27 👁️ 4955
开启360安全卫士的“防蹭网”功能,杜绝被蹭网
365视频游戏世界

开启360安全卫士的“防蹭网”功能,杜绝被蹭网

📅 07-03 👁️ 9351